

NINJAS DA ANATOMIA

IMUNOLOGIA E FISIOLOGIA

APOSTILA II - 2022.1

Organizadora: Catarina Maria Andrade Figueiredo Guimarães Maia ISBN: 978-65-5825-107-1

NINJAS DA ANATOMIA: IMUNOLOGIA E FISIOLOGIA

APOSTILA II - 2022.1

Catarina Maria Andrade Figueiredo Guimarães Maia (Organizadora)

Centro Universitário - UNIESP

CENTRO UNIVERSITÁRIO UNIESP

Reitora

Érika Marques de Almeida Lima

Pró-Reitora Acadêmica

Iany Cavalcanti da Silva Barros

Editor-chefe

Cícero de Sousa Lacerda

Editores assistentes

Márcia de Albuquerque Alves Josemary Marcionila F. R. de C. Rocha

Editora-técnica

Elaine Cristina de Brito Moreira

Corpo Editorial

Ana Margareth Sarmento - Estética Anneliese Heyden Cabral de Lira - Arquitetura Daniel Vitor da Silveira da Costa – Publicidade e Propaganda Érika Lira de Oliveira – Odontologia Ivanildo Félix da Silva Júnior - Pedagogia Jancelice dos Santos Santana – Enfermagem José Carlos Ferreira da Luz - Direito Juliana da Nóbrega Carreiro - Farmácia Larissa Nascimento dos Santos - Design de Interiores Luciano de Santana Medeiros - Administração Marcelo Fernandes de Sousa - Computação Paulo Roberto Nóbrega Cavalcante - Ciências Contábeis Maria da Penha de Lima Coutinho - Psicologia Paula Fernanda Barbosa de Araújo - Medicina Veterinária Rita de Cássia Alves Leal Cruz - Engenharia Rodrigo Wanderley de Sousa Cruz - Educação Física Sandra Suely de Lima Costa Martins Zianne Farias Barros Barbosa - Nutrição

Copyright©2022 - Editora UNIESP

É proibida a reprodução total ou parcial, de qualquer forma ou por qualquer meio. A violação dos direitos autorais (Lei nº 9.610/1998) é crime estabelecido no artigo 184 do Código Penal.

O conteúdo desta publicação é de inteira responsabilidade do(os) autor(es).

Designer Gráfico:

Mariana Morais de Oliveira Araújo

Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca Padre Joaquim Colaço Dourado (UNIESP)

N714 Ninjas da anatomia : imunologia e fisiologia [recurso eletrônico] / Organizado por Catarina Maria Andrade Figueiredo Guimarães Maia. - Cabedelo, PB : Editora UNIIESP, 2022.

60 p.; il.: color.

Apostila II : 2022.1 Tipo de Suporte: E-book ISBN: 78-65-5825-107-1

1. Anatomia. 2. Imunologia. 3. Fisiologia. 4. Microbiologia. I. Título. II. Maia, Catarina Maria Andrade Figueiredo Guimarães.

CDU: 611

Bibliotecária: Elaine Cristina de Brito Moreira - CRB-15/053

Editora UNIESP

Rodovia BR 230, Km 14, s/n, Bloco Central – 2 andar – COOPERE Morada Nova – Cabedelo – Paraíba

CEP: 58109-303

SUMÁRIO

APRESENTAÇÃO	05
IMUNO E MICROBIOLOGIA	06
Maria Vitoria Montenegro Leal	39
FISIOLOGIA	
Catarina Maria Andrade Figueiredo Guimarães Maia Edna Cristina Cabral de Lima Borges Maria Giovanna Aguiar de Souza	

Apresentação

Por muitos anos, o curso de odontologia não possuía um material didático produzido pelos estudantes, baseado nas suas próprias dificuldades, como forma de auxiliá-los no desenvolvimento acadêmico. Nesse cenário, o material criado foi baseado em livros, artigos científicos, aulas acadêmicas onde reúne informações que assistem os alunos na sua rotina de estudo.

Imersa nessa logística, o livro possui conceitos, tópicos, mapas mentais, fluxogramas, tabelas e imagens de modo em que seja melhor compreendido pelos alunos os quais buscam um melhor desempenho e entendimento dos assuntos explorados na grade curricular do curso de odontologia.

Diante do exposto, verificam-se que esse conteúdo tem a capacidade de otimizar o aprendizado e influenciar ao estudo diariamente dos discentes. Nesse viés, o intuito de reunir neste material todos estes graduandos é a de podermos oferecer um livro de alta qualidade, com capítulos escritos de maneira objetiva e que representam a necessidade de melhor compreensão do assunto abordado em sala de aula. Agradeço a colaboração de todos os autores, a boa vontade e o esforço com que se dedicaram para alcançarmos os propósitos desejados. Por fim, este livro, feito com carinho, seja útil a todos os estudantes de odontologia, e graduandos das demais áreas de saúde.

IMUNO E MICROBIOLOGIA

Catarina Maria Andrade Figueiredo Guimarães Maia¹
Karelline Izaltemberg Vasconcelos Rosenstock²
Jancelice dos Santos Santana³
Maria Vitoria Montenegro Leal⁴

IMUNOLOGIA

- É o ramo da biologia que estuda as reações de defesa do organismo.
 - Esse resumo tem o objetivo de compreender as funções, células e órgãos do sistema imunológico.

Funções do sistema Imunológico:

- ✓ Reconhece e elimina agentes infecciosos. São eles: vírus, bactérias, fungos, protozoários e helmintos.
- ✓ Reconhece e elimina substâncias estranhas não infecciosas. São as toxinas.
- ✓ Reconhece e elimina células lesadas e/ou mortas pelo organismo.
- ✓ Reconhece e elimina células malignas. Câncer.
- Reconhece e elimina células, tecidos e/ou órgãos de origem geneticamente diferente. Os transplantes.
 - Nesse sistema existem dois tipos de defesas imunológicas:

Imunidade inata:

Tem como objetivo abranger principalmente as defesas preexistentes e inespecíficos contra o antígeno.

Imunidade adaptativa:

Compreende a resposta antígeno-específica do sistema imune e tem a finalidade de neutralizar o desafio antígeno e reter memória.

6

¹ Docente UNIESP. E-mail: catarina.maia@iesp.edu.br

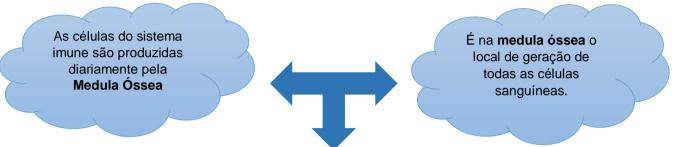
² Docente UNIESP. E-mail: karelline.rosenstock@iesp.edu.br

³ Docente UNIESP. E-mail: janceline.santana@iesp.edu.br

⁴ Discente UNIESP.

• Células do sistema imunológico:

- ✓ Neutrófilos: Essas células são muito importantes contra a ocupação de microrganismos. Têm sua principal função fagocitar bactérias e outros microrganismos que invadem o corpo humano.
- ✓ Eosinófilos: Essas células são as menos numerosas que os neutrófilos, sua principal função é a destruição de parasitas e envolvidas nas reações alérgicas. Aparecem em processos alérgicos e reações parasitas.
- ✓ Basófilo: São granulócitos sanguíneos. São células de núcleo volumoso e ainda não se sabe qual sua função.
- ✓ Mastócitos: Sua principal função é contribuir para o desenvolvimento das respostas alérgicas.
- ✓ Célula dendrítica: Sua função é fagocitar e apesentar antígenos para células T imaturas.
- ✓ Células NK: Essas células são matadoras naturais. É responsável pela liberação de grânulos que matam as células infectadas por vírus e células tumorais.
- ✓ Linfócito T: Essas células se originam na Medula Óssea e amadurecem no Timo. Possui várias funções e todas são importantes para o organismo.
- Linfócito B: Sua principal função é a produção de anticorpos e apresentação de antígenos.


Órgãos do sistema imunológico:

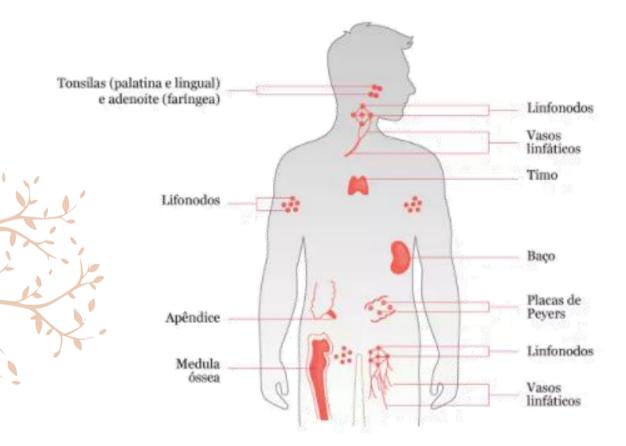
- → Os órgãos do sistema imunológico são classificados em: órgãos linfoides geradores ou primários e órgãos linfoides secundários ou periféricos.
- Órgãos linfoides geradores ou primários:

Timo: É onde ocorre o processo de maturação dos linfócitos T e está localizado acima do coração.

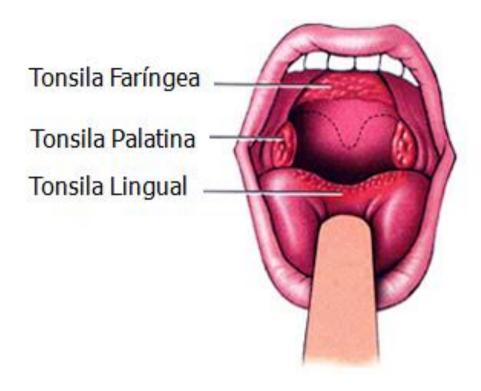
Medula Óssea: É um tecido gelatinoso localizado dentro dos ossos. São responsáveis pela produção das células sanguíneas, como: hemácias, plaquetas e leucócitos.

OBSERVAÇÕES SOBRE A MEDULA ÓSSEA:

É também o local de maturação dos leucócitos exceto do linfócito T.


• Órgãos linfoides secundários ou periféricos:

Linfonodos: Pequenos órgãos formados pelo tecido linfoide, são encapsulados e ricos em linfócitos. Sua função é começar respostas imunológicas adaptativas aos antígenos microbianos que são trazidos pela linfa.


Baço: Esse órgão fica localizado na região superior esquerda do abdômen e ele age como um filtro pra identificar e remover glóbulos vermelhos que estão danificados para que novos glóbulos atuem.

Nesses órgãos estão inclusos também as **Tonsilas:** são pequenas massas de tecido linfoide ricas em glóbulos brancos que reveste as cavidades bucais e faríngeas.

- ⇒ **Tonsilas palatinas:** também chamadas de amígdalas, são duas estruturas arredondadas localizadas na parede póstero-lateral da garganta.
- ⇒ Tonsilas faríngeas: ajudam na defesa contra corpos estranhos e são localizadas na parede posterior da parte nasal da faringe.
- ⇒ Tonsilas linguais: atua na produção de anticorpos e está localizada na base da língua.

Fonte: educamaisbrasil.com.br

Fonte: sanarmed.com

IMUNIDADE INATA

A imunidade inata tem como objetivo abranger principalmente as defesas preexistentes e inespecíficos contra o antígeno.

- ✓ Estão presentes ao nascimento antes da exposição aos patógenos ou a outras macromoléculas não apropriadas.
- ✓ Tem uma resposta rápida.
- ✓ A primeira linha de defesa do organismo.
- ✓ Bloqueia a entrada de microrganismos e elimina rapidamente aqueles que conseguem entrar nos tecidos do hospedeiro.
- ✓ Não há memória imunológica.
- ✓ Reconhece estruturas que são comuns a diversas classes de microrganismos.

OBSERVAÇÕES:

As moléculas microbianas que estimulam a imunidade são chamadas de padrões moleculares associados ao patógeno (PAMP).

- O sistema imunológico inato também reconhece moléculas que são liberadas das células danificadas ou necróticas, são chamadas de padrões associados ao dano (DAMP).
- Células normais não produzem ligantes para receptores imunes inatos (PAMP).
- As proteínas regulatórias previnem a ativação de vários componentes da imunidade inata

COMPONENTES DO SISTEMA IMUNE INATO Barreiras Anatômicas Células Circulantes e Teciduais Proteínas Circulantes

BARREIRAS ANATÔMICAS:

- I. Barreiras Físicas
- 2. Barreiras Químicas
- 3. Fatores Biológicos

1. Barreiras físicas:

- As membranas que recobrem os sistemas do organismo são protegidas por muco, secreções ácidas e enzimas.
- Atuam removendo qualquer invasor em potencial, essas secreções também possuem substancias antibacterianas e antivirais.
- A perda da integridade dessas camadas epiteliais por lesões, predispõe um indivíduo as infecções.

2. Barreiras químicas:

 Lisozima e fosfolipase encontrados na lágrima, saliva e secreção nasal podem destruir a parede celular da bactéria e desestabilizar as membranas bacterianas. O baixo pH do suor e da secreção gástrica previnem o crescimento de bactéria.

3. Fatores biológicos:

- Os organismos comensais (MICROBIOTA BACTERIANA) no intestino são necessários para regular as respostas imunes inatas.
- Bactérias comensais: bactérias não patogênicas da microbiota normal associada às superfícies epiteliais.

ATENÇÃO:

Quando as bactérias não-patogênicas são mortas pelos tratamentos com antibióticos, os microrganismos patogênicos substituem e causam doença.

CÉLULAS CIRCULANTES E TECIDUAIS

- Fagócitos (Macrófagos, monócitos e neutrófilos).
- 2. Células NK.
- 3. Células Dendríticas.

1.Fagócitos:

- Os fagócitos aderem aos micro-organismos através de receptores inespecíficos da membrana celular, após o que pseudópodes se alongam em torno da partícula e se internalizam em um fagossomo.
- Macrófagos são encontrados em áreas de filtração do sangue, onde é mais provável haver partículas antigênicas, por exemplo sinusoides hepáticos, sinusoides renais, alvéolos, linfonodos e baço.
- Células circulantes de vida curta, que podem invadir os tecidos, enquanto os últimos são células maduras, no estágio de células residentes em tecidos ou como monócitos circulantes.

2.Células NK:

 Células natural killer (NK) são linfócitos não fagocíticos que contribuem com mais de 10% dos linfócitos sanguíneos e possuem função especial na morte de células infectadas por vírus e malignas.

3. Células Dendríticas:

- São células com longos processos citoplasmáticos do tipo dendritos, estão presentes no epitélio e na maioria dos tecidos do corpo.
- Essas células são capazes de disparar e direcionar as respostas imunes adaptativas mediadas por célula T.

PROTEÍNAS CIRCULANTES

Sistema Complemento

- Está muito envolvido na resposta inflamatória e é um dos mecanismos efetores-chave do sistema imune.
- O sistema complemento é uma família de proteínas que são ativadas sequencialmente diretamente por alguns microrganismos (via alternativa), pela lectina (via da lectina) e pelos anticorpos (via clássica).
- Sua função é estimular a inflamação e destruir os patógenos.

Via alternativa:

- Pode ser estimulada diretamente por micro-organismos e é importante nos estágios iniciais da infecção antes da produção dos anticorpos. Faz parte do sistema imune inato.
- Componente central das vias clássica e alternativa. Produtos da ativação de C3 (C3b e C3 inativado [iC3b]) se ligam aos microorganismos e são reconhecidos pelos receptores para complemento (CRs) dos fagócitos.

Via clássica:

- Necessita de anticorpos e pode levar semanas para se desenvolver.
 Ambas as vias podem levar à lise celular por meio da formação do complexo de ataque à membrana. Durante o curso da ativação do complemento, são produzidos numerosos fragmentos, oriundos dos produtos dos componentes do complemento, com importantes efeitos biológicos.
- A via clássica de ativação do complemento é iniciada principalmente por complexos antígeno e anticorpo. Anticorpos das classes de imunoglobulina (Ig) IgG1, IgG2, IgG3 e IgM, mas não IgG4, IgA, IgD ou IgE, podem ativar a via clássica.

IMUNIDADE ADAPTATIVA OU ADQUIRIDA

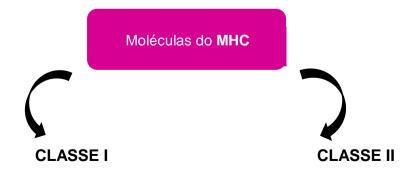
- Dispõem de sete características principais: especificidade, diversidade, memória, expansão clonal, especialização, contração e homeostasia e não reatividade ao próprio.
 - Especificidade: garante a resposta imune a um antígeno.
 - ✓ Diversidade: permite que o sistema imune responda a uma grande variedade de antígenos.
 - Memória: aumenta a habilidade no combate a infecções repetidas pelo mesmo microrganismo.
 - ✓ Expansão clonal: aumenta o número de linfócitos específicos para o antígeno.
 - ✓ Especialização: gera respostas de defesa contra diferentes tipos de microrganismos.
 - ✓ Contração e homeostasia: permite que o sistema imune se recupere de uma resposta que ele pode responder a antígenos encontrados recentemente.
 - ✓ Não reatividade ao próprio: previne lesão ao hospedeiro durante as respostas aos antígenos estranhos.

 \Rightarrow É a defesa contra microrganismos intracelulares.

Mediados pelos linfócitos T

Os linfócitos T só reconhecem antígenos proteicos que são apresentados células pelas apresentados pelas células apresentadoras de antígenos (APCS).

Célula T auxilia (CD4+)



- Ajudam os linfócitos B a produzir anticorpos.
- As células fagocitórias ingerem os microrganismos.

Citotóxico (CD8+)

• Destroem células infectadas por microrganismos intracelulares.

 Moléculas de MHC Classe I apresentam antígenos para os linfócitos T CD8+.

Podem ser expressas por células nucleadas infectadas.

- Vírus no citoplasma.
- Proteína citosólica.
- Processamento de antígeno.
- Biossíntose do MHC
- Associação peptídeo – MHC.

 Moléculas do MHC Classe II apresentam antígenos para os linfócitos T CD4+.

São expressas por células dendríticas, macrófagos e células B.

São capturados por endocitose e processados pelas células professionais (células dendríticas, linfócito B e macrófagos.

 As moléculas de MHC são sintetizados no RE (Retículo endoplasmático).

PROCESSA

- MHC I -> proteínas citosólicas
- MHC II -> proteínas vesiculares

SUBGRUPOS DOS LINFÓCITOS T CD4+

- TH 1 -> secretam citosinas que atuam:
 - Sobre macrófagos para aumentar a fagocitose e morte de microrganismos.
 - Linfócito B para estimular a produção de anticorpos IgG.
- TH 2 -> secretam citosina que atuam:
 - Linfócito B -> produção de anticorpos IgE.

- Eosinófilos -> defesa contra infecções por vermes.
- TH 17 -> estimulam a produção de citosinas que:
 - Contribuem para a inflamação, tendo respostas dos neutrófilos.
 - Aumentam a produção de peptídeos antimicrobianos.
 - Atuam mantendo a integridade da barreira Epitelial.

- Resposta imune adaptativa/adquirida mediado por anticorpos.
- Os linfócitos B são as únicas células que sintetizam anticorpos.
 - Para iniciar respostas de anticorpos, os antígenos tem que ser capturados e transportados para áreas de células B de órgãos linfoides.

IMPORTANTE:

Plasmócitos secretadores de anticorpos migram para medula óssea ou tecidos de mucosa e vivem por anos produzindo continuamente baixos níveis de anticorpos.

Ação dos anticorpos:

- Os anticorpos se ligam aos microrganismos e impedem de infectar as células.
- Respostas dependentes:
 - A célula do linfócito B só é ativado quando apresentam o antígeno as células do linfócito TCD4+.
 - Requer auxilio dos linfócitos TCD4+ para serem ativadas, isso ocorre quando são antígenos proteicos.

- As respostas a antígenos não proteicos não necessita da célula TCD4+.

• Respostas independentes:

- Não precisa do linfócito TCD4+.
- Ativado diretamente pelo antígeno.
- Antígenos não proteicos.

TROCAS DE CLASSES DA IG

Tipos de anticorpo G (ou imunoglobulina):

- IgM
- IgG
- IgA
- IgE
- IgD

- A troca ocorre a diferentes tipos de microrganismos.
- É regulado por citocinos produzidos pelas células T ausentes.

<u>IgM:</u>

- Primeira Ig a ser produzida.
- Fase aguda da infecção.
- Ativação do sistema complemento.

IgG:

- Maior concentração no sangue.
- É a principal imunoglobulina.
- Produzida na fase aguda, mas permanece na fase crônica da infecção.

IgA:

- Imunidade de mucosas.
- Função: neutralização e aglutinação.
- Bloqueia a invasão de microrganismo pelo epitélio.

IgE:

- Resposta imune a muitos parasitas helmintos (vermes).

- Envolvidos em processos alérgicos.
- Alta concentração de IgE no exame pode indicar uma reação alérgica.

IgD:

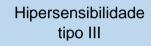
- Presente na membrana de linfócitos imaturos.
- Não é secretado.
- Sua função é desconhecida.

PRINCIPAIS FUNÇÕES EFETORAS DOS ANTICORPOS DA

- Neutralização: lgG e lgA
- Opsonização: IgG
- Ativação das proteínas do sistema complemento: lgG e lgM
- Citoxicidade celular depende de anticorpos: IgG
- Reações mediadas por imunoglobulinas e eosinófilos/mastócitos:

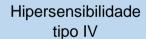
REAÇÕES DE HIPERSENSIBILIDADE

Hipersensibilidade tipo I



- Reações de hipersensibilidade tipo I ou atopias são estados inflamatórios de pele e/ou mucosas, mediados por Ig, mastócitos e basófilos com receptores de alta afinidade para IgE.
- A reação é iniciada pela entrada de um antígeno denominado alérgeno. Podem ocorrer de forma localizada como **rinite alérgica**, **dermatite atópica**, **asma brônquica**, **entre outras**.

Hipersensibilidade tipo II



- Citotoxidade celular é hipersensibilidade tipo II, o anticorpo vai reagir com os antígenos presentes nas superfícies ou na matriz extracelular.
- Ativa o sistema complemento (inflamações).

- Reações por imunocomplexos, formados por antígeno-anticorpocomplemento são responsáveis pela lesão tecidual.
- Os isótipos de imunoglobulinas mais envolvidos são IgM e IgG.
- Algumas reações são: doença de soro, doenças autoimunes (lúpus eritematoso, artrite reumatoide), entre outras.

- Ativação de linfócitos T CD4+ ou CD8+ por antígeno.
- Exemplos: infecções por bactérias intracelulares, infecções fungicas e virais, rejeição crônica a transplantes, entre outros.

MICROBIOLOGIA ORAL

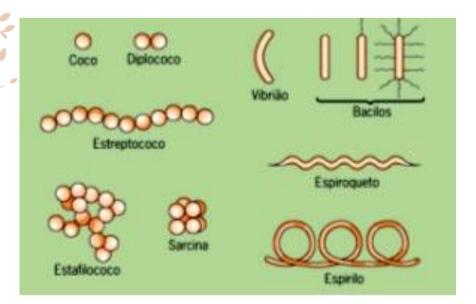
- Todas as formas de vida são classificadas em três domínios ARCHEA, BACTÉRIA E EUCARYA.
- Archea e Bactéria em conjunto, são conhecidas como procarionte.

ESTRUTURA:

 As células possuem um núcleo. No caso das bactérias é um nucleoide contendo DNA. Nos organismos celulares o núcleo é circundado por citoplasma, onde a energia é gerada e as proteínas são sintetizadas.

REPRODUÇÃO:

 As bactérias se reproduzem por divisão binária (uma célula parente se divide em duas células simulares.

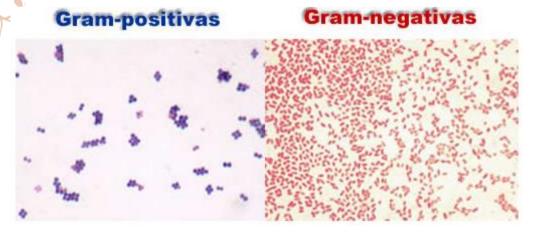

Podem se multiplicar extracelularmente, EXCETO as riquétsias e clamídias, que são bactérias que precisam de células vivas para a multiplicação

- Os fungos, protozoários e células humanas são eucariontes.
- As bactérias são procariontes.
- <u>Nos procariontes:</u> o genoma bacteriano ou cromossomo é único, constituído por uma molécula de DNA circular, sem presença de membrana nuclear.
- <u>Nas eucariontes:</u> contém núcleo verdadeiro com múltiplos cromossomos envolvidos por uma membrana nuclear.

MORFOLOGIA:

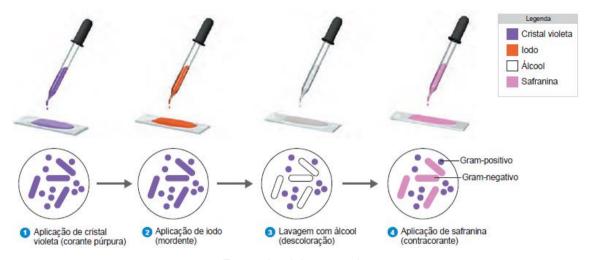
- A forma de uma bactéria é determinada por sua parede celular rígida.
 São classificadas em três grupos principais:
 - Cocos (esféricos)
 - Bacilos (bastonete)
 - Espiroquetas (espirilos)

Fonte: educação.uol.com.br


Pleomórficas: bactérias com várias formas, tanto em forma de coco quanto de bacilo.

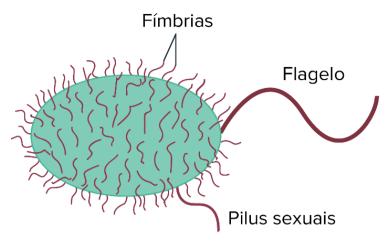
ARRANJOS:

- As bactérias procariontes, em relação ao tamanho, se arranjam em função do plano das sucessivas divisões celulares:
 - Pares (diplococos)
 - Cadeias (estreptococos)
 - Semelhante a cachos de uva (estafilococos)
 - Pares angulosos ou em paliçada (corinebactéria)


COLORAÇÃO GRAM

- As bactérias podem ser classificadas em dois subgrupos de acordo com características das suas paredes celulares.
- A coloração de GRAM divide as bactérias em positivas (violeta) e
 negativa (vermelho).
- A coloração é útil na identificação e terapia das infecções bacterianas.
 - → Gram-positivas: mais sensíveis a penicilina.
 - Gram-negativas: menos sensíveis a penicilina.

Fonte: infoescola.com


COMO É FEITO?

Fonte: tiraojaleco.com.br

ESTRUTURAS EXTERNAS À PAREDE CELULAR

- Flagelo: são filamentos que atuam como propulsores e conduzem as
 bactérias em direção a nutrientes.
- São compostos de várias subunidades de uma proteína simples.
 - Monotríquio: único flagelo
 - Lofotríquio: vários flagelos
 - Peritríquio: por toda superfície externa da bactéria.
- Os espiroquetas se movem fazendo uma estrutura semelhante ao flagelo chamada de Filamento Axial, ele se enrola em volta de célula produzindo movimentos ondulatórios.
- **Fímbria e Pili:** Eles são filamentos finos, capilares, mais curtos que os flagelos, que se projetam da superfície celular.

Fonte: pt.khanacademy.org

- Um tipo especializado de pilus, o Pilus Sexual que forma a ligação entre a bactéria macho (doadora) e a fêmea (receptora), durante a conjunção os genes são transferidos de uma bactéria para outra.
- Glicocálice (camada limosa): capa polissacaridica que recobre as superfícies externas de várias bactérias.
- Permite também que a bactéria adira firmemente várias estruturas.
 Exemplo: mucosa oral dente, valvas cardíacas e cateteres, e contribui para a formação de biofilmes.

PATOGÉNOS

- Microrganismos capaz de gerar doença.
- Minoria no meio.
- Infecção:
- Grau de patogenicidade/virulência.
- Imunidade hospedeiro (oportunista).

PATOGENICIDADE:

- Infecção:
- Grau de patogenicidade/virulência.
- Potencial Tóxico e Potencial Invasor.
- Depende da quantidade de microrganismos.
- Imunidade hospedeiro (oportunista).

CLASSIFICAÇÃO DAS INFECÇÕES:

- Endemia: baixo nível população especifica.
- Epidemia: frequência acima do normal.
- Pandemia: infecção com distribuição mundial.

HISTÓRIA NATURAL DA DOENÇA:

- 1.Período de incubação: aquisição da doença.
- 2. Período prodrômico: sinais inespecíficos.
- 3. Doença específica aguda: sinais específicos.
- 4. Período de recuperação: homeostasia.
- 5. Fase crônica.

CRONOLOGIA DA INFECÇÃO:

Patogenicidade:

- Capacidade de adaptação (mutação).
- Defesa.
- Doença.

1. Transmissão:

- Fontes exógenas: MO externos.
- Fontes endógenas patógenos oportunistas.
- Vias: inalação ingestão inoculação.

2. Aderência:

- Primeiro passo da infecção.
- Aderência: condição imprescindível.
- Meio: estruturas especificas ou substâncias.

3. Biofilme:

- Comunidades celulares efetividade
- 65% das infecções humanas ocorrem por filme.
- Fixados em superfície sólida dente, pele. etc.
- Arquitetura complexa estrutura + canais de transporte.

4. Invasividade:

- Papel crítico depende de enzimas bacterianas secretadas:
- Colagenase e hialuronidase degradação intercelular. Ex Streptococos
 pyogenes
- Coagulase: camada fibrina ao redor (antifagocitária). Ex: Staphylococos aureus.
- Imunogl A Protease: degrada IgA secretora (fixação). Ex:
 Staphylococos pneumoniae.
- Leucocidinas: destruição de neutrófilos macrófagos. Ex: Aggregatbacter actinomycetemcomitans:

5. Toxicidade:

- Categorias: endotoxinas e exotoxinas:
- Endotoxinas: parede Celulis GRAM NEGATIVAS lipopolissacarideos:
- Exotoxinas: GRAM POSITIVAS E GRAM NEGATIVAS:

- Polipepídeos Gens localizados nos plasmídeos I adesão e invasão: L.
 Citoxidade.
- → Endotoxinas:
- Febre: liberação de pirógenos endógenos (macrófagos).
- Hipotensão: liberação de bradicilina (vasodiatação).
- Inflamação + Dano Tecidual: cascata do complemento.
- Coagulação: coagulação intravascular e isquemia.
- Anticorpos e Atividade Fagocitária: ativação.

CRONOLOGIA DA INFECÇÃO:

- → Resistência a antimicrobianos:
 - 1. Proteção Imunitária: matriz polissacarídea extracelular.
 - 2. Penetração Antimicrobianos: apenas camadas superficiais.
 - 3. Inativação Antimicrobianos: degradação (penetração inicial).
 - 4. Ação Antimicrobianos: pH não atinge atividade ótima.
 - 5. Microrganismos mais patogênicos: expressão de genes.

- → É o ramo da biologia que estuda os fungos.
- → São microrganismos eucarionte e procariontes.
- → O fungo mais importante e relevante para a odontologia é uma levedura que pertence ao gênero CANDIDA.

MORFOLOGIA:

• Apresentam duas formas estruturais: Leveduras e Bolor.

LEVEDURAS:

- São unicelulares, com corpos esféricos ou ovoides.
- Forma fixa ou mutável.
- Mutável (DIMORFISMO): Espécies Patogénicas.
- Depende da temperatura, presença de oxigênio.

REPRODUÇÃO:

- Reprodução por Brotamento (Assexuada).
- Broto se alonga -> Multiplicação e Divisão
- Núcleo da Parental -> Formação da Parede Celular -> Separação do Broto.
- Levedura recém formada se separa da levedura parental.
- Pseudo-hifas: as leveduras independentes mas que não se separam.

PSEUDO-HIFAS: FIXAÇÃO

HIFA (BOLOR):

- Multicelulares. Tubos semelhantes a filamentos (unidades estruturais de leveduras).
- Forma fixa ou mutável.
- Mutável (DIMORFISMO): Espécies Patogénicas.
- HIFAS = maior dano (PATOGENICIDADE).

REPRODUÇÃO:

- Crescem por alongamento das extremidades.
- Forma mais comum:
 - Hifa parental -> Esporo ASSEXUADO -> Separação -> Hifa germinada.

CLASSIFICAÇÃO:

- A maioria dos fungos medicamente importantes são classificadas como fungos imperfeitos. Classificados em:
 - Leveduras
 - Fungos filamentosos
 - Fungos dimórficos

MÉTODOS UTILIZADOS:

- As leveduras são identificadas por reações bioquímicas com base na sua fermentação.
- As hifas são identificadas pela sua cor, textura e morfologia microscópica e das colônias.

MICOSES:

MICOSE SISTÊMICA:

- São as mais graves.
- Frequentemente Fatais.
- Envolvem os órgãos internos.
- Profundas.
- Os micro-organismos geralmente são adquiridos através de inalação.

Fonte: pt.wikipedia.org

MICOSE SUBCUTÂNEA:

- Implantação traurática de fungos do meio ambiente levando à doença crônica progressiva.
- Destruição tecidual e formação de micetomas.
- Abaixo da pele.
- Adquiridas através do solo ou perfuração na pele.

Fonte: portaldemicologia.com.br

MICOSE CUTÂNEA:

- Envolvem as camadas mais profundas da epiderme e seus tegumentos,
 o cabelo e as unhas.
- Degradação de queratina.

Figura 5: Eritema multiforme no dorso

Fonte: scielo.br

MICOSE SUPERFICIAL:

- Envolvem as superfícies das mucosas e as estruturas queratinizadas do organismo (pele, unhas e cabelos).
- Superficial (clima tropical).

Fonte: atlasdasaude.pt

MICOSE OPRTUNISTA:

- Quando os fungos (como Cândida albicans) questão geralmente inócuos para os seres humanos saudáveis causam doenças em grupos de pacientes comprometidos são chamados de patógenos oportunistas.
- Tais micoses oportunistas são cada vez mais comuns devido ao aumento global de indivíduos comprometidos, como nos pacientes infectados com o vírus da imunodeficiência humana (HIV).
- Receberam transplantes de órgãos e estão sob terapia imunossupressora e em pacientes com câncer sob terapia citotóxica e em radioterapia.

CANDIDA ALBICANS:

(Fatores de Virulência)

- Capacidade de aderência ao tecido hospedeiro e às próteses (ex: dentaduras), formando biofilmes.
- Potencial de alternância (ex: formação de colônias de leve para severa)
 e de modificação dos antígenos de superfície.
- Capacidade de formar hifas, que auxiliam na invasão tecidual.
- Produção de fosfolipase e proteinase extracelular e de hemolisina, que quebram as barreiras físicas de defesa do hospedeiro.

Fonte: tuasaude.com

- → Parasitas intracelulares obrigatórios.
- São infecciosos e potencialmente capazes de causar doenças aos humanos e animais.

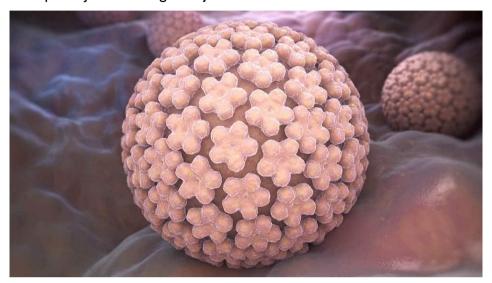
- Menor forma de agentes patógenos, com capacidade de infectar bactérias.
- Existem vários tipos de vírus.

ESTRUTURAS E CARACTERÍSTICAS:

- Parasita intracelulares obrigatórios.
- Seu material genético é em DNA ou RNA (genoma viral) que vai está coberto por um capsídeo (capa em volta) é formado por estruturas menores chamada de capsômero, essa união será chamada de nucleocapsídeo. (Exemplos: vírus da gripe).
- Vão ter vírus que são envelopados (capsídeo + envelope viral), e outra não envelopados (apenas com o capsídeo).

VÍRUS ENVELOPADO:

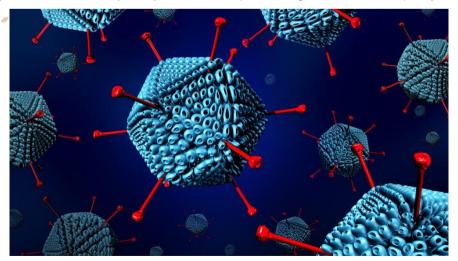
- Envelope viral é constituído por lipídeos e receptores.
- Bicamada lipídica que envolve o capsídeo.
- Apenas fosfolipídios e colesterol.
- Atua principalmente na infectividade viral penetração do hospedeiro.
- Infecta mais.
- Vírus envelopado entra por fusão e o apenas com capsídeo entra através de endocitose.


TAXONOMIA:

Tipos de Vírus

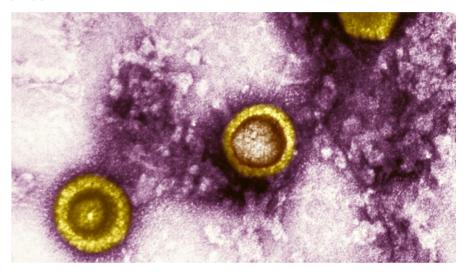
PAPILOMAVÍRUS (HPV):

- Etiologia: papilomavírus humano.
- Transmissão por contato sexual
- Clínico: tumores benignos e malignos.


- Baixo risco: lesões benignas verrucosas.
- 15% do câncer de cabeça e pescoço são causadas pelo HPV.
- Perfil do paciente não fumantes, mais jovens e relacionado a sexo oral sem proteção com alguém já infectado.

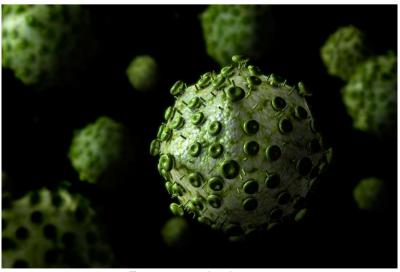
Fonte: drauziovarella.uol.com.br

ADENOVIRUS:


- Vírus de DNA.
- Isolado em infecções de tecidos de adenoide.
- Infecções respiratórias e oculares em humanos.
- Clínico: faringe aguda febril, doenças respiratórias agudas em adultos (podendo evoluir para pneumonias) e infecções oculares (conjuntivite).

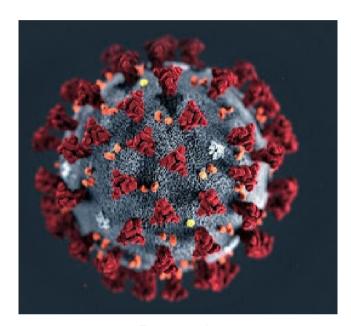
Fonte: drauziovarella.uol.com.br

HERPESVÍRUS:


- Vírus envelopado.
- Causa predominante de infeções orais em humanos.
- Tipo 1: manifestações orais recorrentes e frequentes.
- Herpes Zoster: vírus da varicela Zoster (catapora). Infecta trajeto de nervos.

Fonte: drauziovarella.uol.com.br

<u>RETROVÍRUS:</u>


- São vírus maiores, envelopados e associados a tumores.
- Enzima viral especifica transcriptase reversa.
- Classificação: lentvírus (doença lenta) e Oncovírus: causa tumores (células T humana, leucemia).

Fonte: newscientist.com

CORONAVÍRUS:

- São vírus RNA envelopados com nucleocapsideo helicoidal.
- Infectam animais e humanos.
- Maioria dos coronavírus levam à infecções brandas no trato respiratórias.

Fonte: gov.br

FISIOLOGIA

Catarina Maria Andrade Figueiredo Guimarães Maia¹
Edna Cristina Cabral de Lima Borges²
Maria Giovanna Aguiar de Souza³

Fisiologia

Mecanismos de comunicação entre neurônios:

As comunicações entre os neurônios acontecem por meio de estruturas nomeadas por sinapses nervosas.

As sinapses nervosas se diferenciam em:

• Sinapses químicas: A passagem é unidirecional e ocorrem com liberação de neurotransmissores, essas podem se dividir em excitatórias, em que vão gerar um potencial de ação nas outras membranas chamadas de potencial excitatório pós-sináptico (PEPS), em que ocorrerá a despolarização. Já as inibitórias, como o próprio nome já diz, vão inibir o potencial de ação sendo chamado de potencial inibitório pós-sináptico (PIPS), onde ocorre a hiperpolarização (saída de K + ou entrada de CL-).

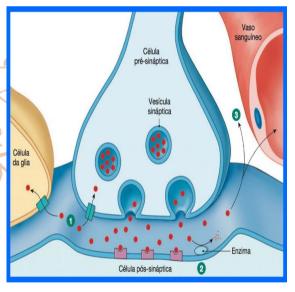
Os íons cálcio são necessários à solução extracelular para transmissão sináptica, pois entram no terminal nervoso pré-sinaptico em decorrência da despolarização.

Sinapses elétricas: são bidirecionais e não ocorrerá a liberação neurotransmissores para estabelecer essa comunicação proteínas chamadas conexinas formam canais entre as membranas, esses canais são chamados de junções gap ou comunicantes, em que permitem a passagem de íons diretamente, assim podendo-se obter um potencial de ação imediato.

Comunicação célula a célula do sistema nervoso:

A comunicação ocorre através das sinapses, em que se define como um local de proximidade do final de um neurônio chamada de membrana

¹ Docente UNIESP. E-mail: Maria Vitoria Montenegro Leal


² Docente UNIESP. E-mail: edna.lima@iesp.edu.br

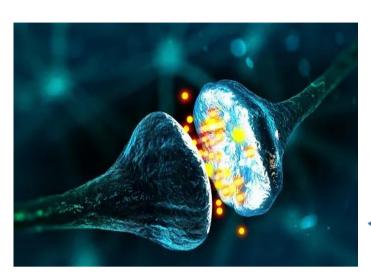
³ Discente UNIESP.

pré-sináptica, onde libera os neurotransmissores na fenda sináptica, e a membrana célula pós-sináptica, em da que vai receber neurotransmissores ao qual pode ser uma célula neuronal ou não. Dessa forma, resumidamente a comunicação ocorre entre o axônio de neurônio ao qual transfere a informação e a outra membrana recebe a mensagem, caso seja outro neurônio serão os dendritos que irão receber a mensagem A passagem da informação de um neurônio para outra célula é feita através das sinapses. As interações dos neurotransmissores com pós-sináptica é realizada por meio de receptores proteicos a membrana específicos.

Os dois tipos de NT.

- Se o neurotransmissor causar despolarização na membrana pós-sináptica, o NT e a sinapse são nomeados de excitatórios. Já se causarem hiperpolarização são chamados de inibitórios.
- O potencial pós-sináptico despolarizante é o potencial pós-sináptico excitatório (PEPS) e o hiperpolarizante, potencial pós-sináptico inibitório (PIPS). Os PEPS e PIPS são, portanto, alterações localizadas no potencial de membrana causadas por aberturas de canais iônicos dependentes de neurotransmissor.

Liberação dos NT.


Célula pré-sináptica: É a membrana do axônio que gera o sinal e libera as vesículas na fenda sináptica.

Célula pós-sináptica: É a membrana que recebe o estímulo através dos neurotransmissores.

Vesícula sináptica: São esferas pequenas ligadas ao extremo dos axônios nos neurônios.

Enzimas: É um elemento orgânico celular, que tem funções catalizadoras.

Célula da glia: São variados tipos celulares presentes no sistema nervoso central.

Fonte: saudeemmovimento.com.br

A célula présináptica sofrerá um potencial de ação e irá despolarizar, ocorrendo a entrada de Na+

Os canais de cálcio abrirão.

Vão se fundir com a membrana e sofrer exocitose, liberando o neurotransmissores na fenda sináptica. As vesículas cheias de neurotransmissores recebem estimulo e são deslocadas até a membrana pré-sináptica.

fonte: mundoeducacao.uol.com.br

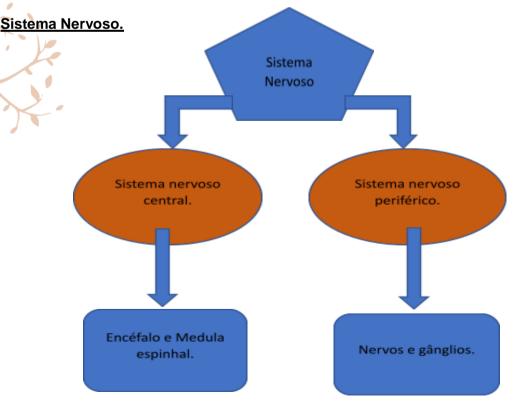
Características do Neurotransmissores:

São sintetizados pelos neurônios présinápticos.

São armazenados dentro de vesículas.

São exocitados para a fenda sináptica com a chegada do PA. Uma vez purificado, mimetizar aos mesmos efeitos fisiológicos.

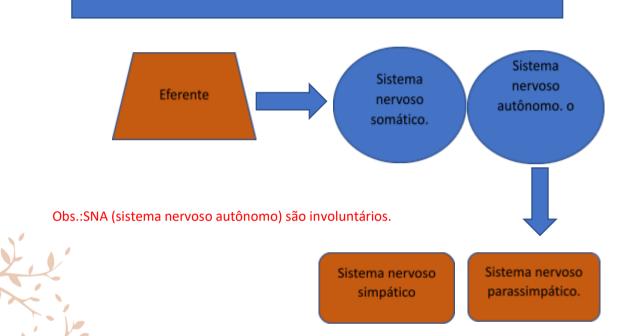
- Geralmente, um neurônio faz somente um tipo de neurotransmissor.
- Os neurotransmissores são sintetizados no próprio terminal.
- Classes de Neurotransmissores:


Os neurotransmissores apresentam dois tipos de efeitos na membrana pós-sináptica:

Excitatórios que causam despolarização.

Inibitórios que causam hiperpolarização (quando há muita saída de R+ ou entrada de CL-).

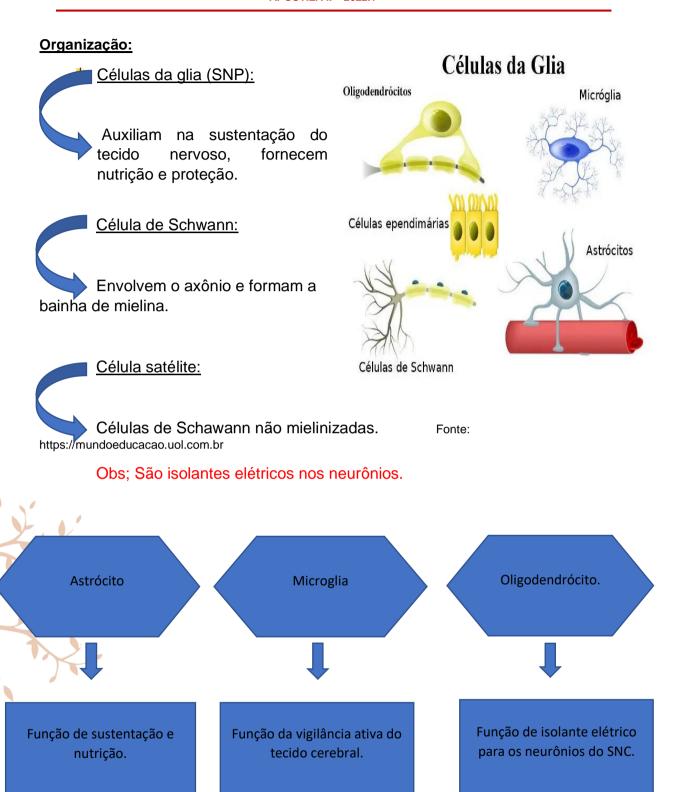
Um mesmo neurotransmissor possui não só um tipo de receptor pós-sináptico, mas vários subtipos.


> O que é o Sistema nervoso?

O sistema nervoso é uma rede complexa de neurônios com funções de captar informações e receber, é também responsável por efetivar todos os movimentos do corpo.

 Juntamente com o sistema endócrino é responsável pela maior parte das funções corporais.

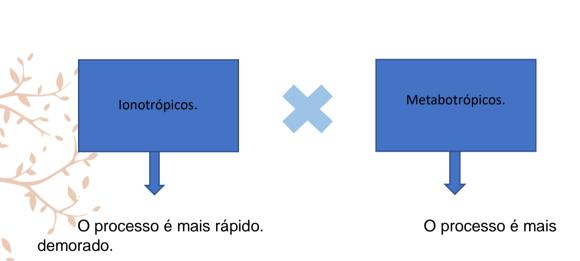
Sistema nervoso periférico.


Esse sistema se divide em porções eferente e aferente (sensitiva).

- O sistema nervoso simpático para situações de estresse.
- O sistema nervoso parassimpático para situações de repouso.

Obs.: Os dois sistemas mantém a homeostase (equilíbrio do corpo).

O músculo cardíaco recebe impulsos que o sistema nervoso autônomo transmite para o sistema nervoso central.


Quais são os tipos de receptores existentes nas membranas pós sinápticas?

- ♣ Receptores ionotrópicos: Possuem sítios que os neurotransmissores irão se ligar, assim ocorre essa ligação com o receptor, haverá uma mudança na sua conformidade ao qual irá resultar na abertura do canal.
- Receptores metabotrópicos, possuem sítios para os N+ mas não são canais iônicos.

Quando o neurotransmissor se liga, ele ativa a proteína G.

Pode abrir um canal iônico.

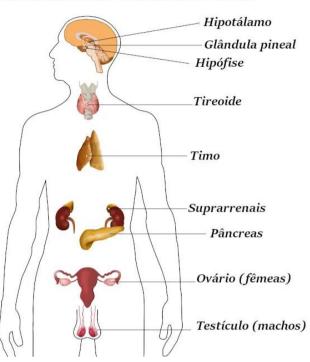
Pode ativar a enzima que promove a passagem do impulso nervoso.

Como desativar a neurotransmissão?

- Difusão lateral.
- Degradação enzimática.
- Recaptação pela membrana pré-sináptica.

Curiosidade: Muitos antidepressivos agem inibindo essa recaptação da serotonina pela membrana pré-sináptica, fazendo aumentar a mesma e diminuir o quadro antidepressivo.

Sistema Endócrino


Esse sistema é composto por um grupo de órgãos que exercem a principal função a produção e secreção de hormônios.

Quais suas funções?

As glândulas endócrinas exercem a tarefa de sintetizar os hormônios que são sintetizados na corrente sanguínea.

Obs: Aqueles órgãos que tem sua atribuição regulada por hormônios são chamados de órgãos-alvos.

Sistema Endócrino

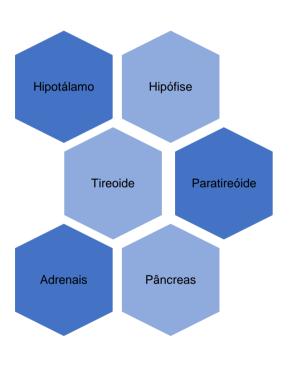
Fonte:www.brasilescola.uol.com.br

Glândulas Endócrinas Hormônios

Tem uma função pré-determinada, produzem hormônio secretam no meio extracelular.

São responsáveis por produzir os hormônios e se diferenciam por não possuírem ductos.

É uma substância química produzida por células que, ao ser carregada pelo sangue age em um alvo distante. Tendo funções de regulação do crescimento, sexual, equilíbrio interno...


Classificação dos hormônios.

Peptídicos (composto por aminoácidos) Esteroídes (derivados do colesterol)

Amina e Eicosanoídes

Principais órgãos produtores de hormônios.

Glândulas	Hormônios	Localização
Hipófise	FSH, TSH, ACTH, GH LH, Ocitocina e ADH	Hipotálamo
Tiroide	Tiroxina – T4 Triiodotironina – T3	Traqueia
Paratireoide	Paratormônio	Traqueia
Suprarrenais ou Adrenais	Cortizol, Aldesterona, Adrenalina e Noradrenalina	Região dorsal dos rins
Pâncreas	Insulina e Glucagon	Curvatura menor do estômago junto ao duodeno
Pineal	Melatonina	Hipotálamo
Ovários	Estrógeno e Progesterona	Abdômen
Glândulas Mamárias	Prolactina	Abdômen
Testículos	Testosterona	Bolsa escrotal
Rins	Eritropoietina e Renina	Parte posterior do abdômen
Células Parietais do Estômago	Gastrina	Abdômen

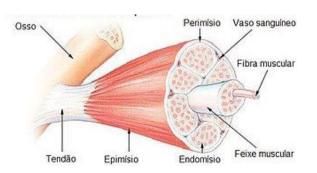
Fonte: Vetprofissional.com.br

- Adrenalina: Aumenta a pressão artéria, dilata a pupila e eleva a frequência cardíaca assim, prepara o corpo para situações de emergência.
- <u>Tiroxina</u>: Aumenta o consumo de oxigênio por grama de tecido assim, eleva a taxa metabólica basal.
- Vasopressina: Regulação de reabsorção de água nos rins (antidiurese).

Sistema Muscular.

Fonte: sobiologia.com.br

Qual a função do músculo?

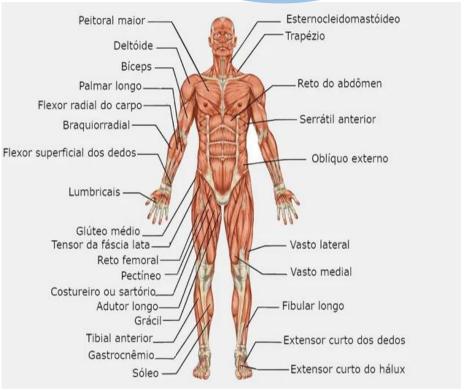

Produção de movimentos corporais, respiração, postura e sustentação do peso corporal, produção de calor.

Os músculos são formados por um conjunto de fibras musculares, as miofibrilas, que são organizadas em feixes e envolvidas por um tecido.

Quais são os tipos de músculos?

- 1. Esquelético.
- 2. Liso.
- 3. Cardíaco.

Formato dos músculos:


Fonte: anatomia-papel-e-caneta.com

O sistema muscular transforma energia química em energia mecânica assim, gera os movimentos e força.

Sistema Muscular Esquelético.

Encarregado pela postura e movimento.

Fonte:www.todamateria.com.br/sistema-muscular

Qual a função do músculo?

Produção de movimentos corporais, respiração, postura e sustentação do peso corporal, produção de calor.

Qual a função do músculo esquelético?

Promovem o fluxo de linfa e o retorno do sangue para o coração, produção de calor quando o tecido muscular se contrai ele produz calor.

Músculo Estriado Esquelético.

É envolvido no deslocamento e movimentação do corpo.

Músculo Liso.

É envolvido nos movimentos do sistema digestório.

- ❖ Sistema motor somático Movimento do corpo.
- Miofibrilas Proteínas contráteis da célula muscular.

Etapas do músculo esquelético:

Excitação

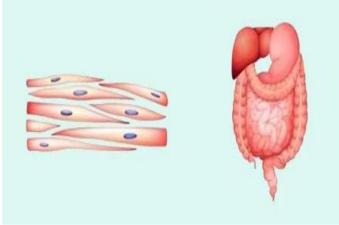

O influxo resultante de sódio que despolariza a fibra muscular dispara um potencial de ação que leva a contração da célula muscular esquelética.

Contração

Ocorre com a ação de impulsos nervosos, liberando íons cálcio que atuarão com moléculas de ATP no movimento dos filamentos das miofibrilas.

CONTRAÇÃO MUSCULAR

 Regulação do Acoplamento Excitação-Contração:



Fonte: https://slideplayer.com.br

Sistema Muscular liso.

❖ Classificação:

Músculo liso vascular. Músculo liso não-vascular.

❖ Características:

- Apresentam cavéolas.
- Possuem corpos densos.
- Apresenta atividade ATPásicas mais lenta que o músculo esquelético.
- Apresentam sarcômeros que são unidades contráteis.

Fonte: todamateria.com.br

O músculo liso e cardíaco auxiliam na manutenção da homeostase corporal.

Possuem miofilamentos de actina e a miosina, mas estão espalhados pelos citoplasmas das células.

Contrações no músculo liso:

1.

O cálcio Ca²⁺ entra nas fibras musculares lisas e assim inicia a contração. Em seguida causa a liberação adicional do mesmo a partir do retículo sarcoplasmático após isso se liga a Calmodulina (CaM).

3.

4.

Desse modo, ativa a enzima Miosina Cinase de cadeia leve (MCCL) A mesma ativa fosforila as cadeias leves de Miosina, utilizando energia e Pi a partir das moléculas de ATP Possui atividade ATPase que permite o estabeleci mento das pontes cruzadas cíclicas e as contrações.

Relaxamento do músculo liso:

A miosina fosfatase remove o fosfato da mesma e diminui a atividade ATPase, após isso o Ca²⁺ é retirado do citoplasma usando Ca²⁺ -Na⁺ antiporte e Ca²⁺ -ATPase. Dessa forma, a calmodulina liberta o Ca²⁺ e o MCCL torna-se inativa.

O músculo liso é involuntário localiza-se na pele, órgãos internos, aparelho reprodutor, grandes vasos sanguíneos e aparelho excretor.

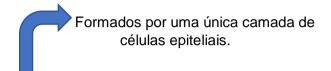
Fonte: todamateria.com.br

Músculo liso é multiunitário.

A musculatura lisa é revestida por lâmina basal e unidas por uma rede muita delicada de fibras reticulares, que amarram as fibras musculares para a contração simultânea de fibras, estimulando a contração do músculo inteiro.

Sistema Respiratório.

- É o conjunto dos órgãos responsáveis pela absorção do oxigênio do ar pelo organismo e da eliminação do gás carbônico retirado das células.
- Ocorre no interior das mitocôndrias.


Fonte: educador.brasilescola.uol.com.br

- Qual a função do sistema respiratório?
 - Permite a entrada do oxigênio e a saída do dióxido de carbono do corpo.
 Substâncias orgânicas + O2 → energia + CO2 + H2O.
 - Regulação do Ph corporal.
 - Responsável pela vocalização.
 - Proteção contra patógenos.
- Onde se inicia o sistema respiratório?

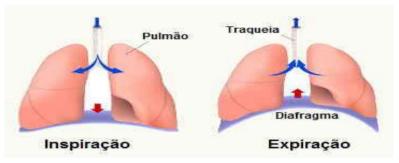
Começa no nariz e na boca e continua pelas vias aéreas e pulmões. O ar entra no **sistema respiratório** pelo nariz e boca, passando pela garganta (faringe) e caixa de voz ou laringe.

Obs.:

Puxar o ar pelo nariz é fundamental, porque ele está mais preparado para receber o oxigênio direcionado ao pulmão. Além disso, a cavidade nasal tem pelos que ajudam a limpar as impurezas do ambiente.

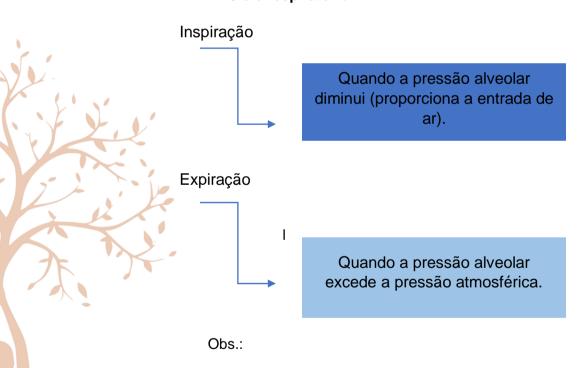
Fonte:mundoeducaçao.uol.com.br

- ❖ Nos alvéolos pulmonares, acontece o processo conhecido como hematose (troca gasosa), que garante que o sangue pobre em oxigênio torna-se oxigenado.
- Ocorre também quatro processos:
 - Ventilação:
 - Transporte de oxigênio e dióxido de carbono pelo sangue.
 - Troca de oxigênio e dióxido de carbono entre os pulmões e o sangue.
 - Troca de gases entre o sangue e as células.


Obs.: Ossos e tórax auxiliam na ventilação.

A filtração do ar ocorre traqueia e brônquios para a secreção de muco.

Circulação pulmonar é um sistema de baixa pressão e alta taxa de fluxo.


- ❖ A circulação pulmonar começa com as artérias, recebe sangue com pouca quantidade de O2 e a partir do ventrículo direito (CO2).
- Os pulmões podem ser expandidos e contraídos por dois mecanismos:
 - Pelo movimento de subida e descida do diafragma.
 - Pela elevação e abaixamento das costelas para aumentar e diminuir o diâmetro anteroposterior da cavidade torácica.

- O fluxo de ar para os pulmões ocorre quando os músculos da caixa torácica e o diafragma se contraem assim, o pulmão se expande e fornece gradiente de pressão.
- 2. Desse modo, o fluxo de ar acontece em resposta a um gradiente de pressão e diminui com a resistência do sistema.
- Como a pressão atmosférica é constante a pressão dos pulmões deve ser mais baixa ou mais alta para o ar fluir entre o ambiente externo e os alvéolos.

Fonte: planetabiologia.com

Ciclo respiratório.

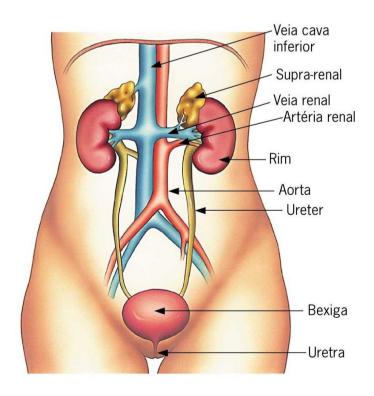
- 1. Durante a inspiração o diafragma se contrai e desce aumentando o volume da caixa toráxica.
- 2. Quando a pressão interna da caixa toráxica
- 3. Quando a pressão interna da caixa toráxica diminui e se torna menor que a pressão do ar atmosférico, o ar penetra nos pulmões.
- 4. Quando o diafragma relaxa, ele reduz o volume toráxico e empurra o ar usado para fora dos pulmões.

- 5. Durante a expiração, o volume toráxico diminui, e a pressão interna se torna maior que a pressão do ar atmosférico.
- Diferença entre a respiração celular e a respiração pulmonar:

A respiração celular é desempenhada na parte interna das células, sendo a responsável por obter energia. Já a respiração pulmonar atua disponibilizando oxigênio para que as células possam realizar seu processo de respiração celular e retirada do gás carbônico.

Sistema Renal

Qual a função do sistema renal?


Tem a função de regulação do equilíbrio elétrico e hídrico. Assim, conseguem regular o volume dos líquidos corporais, balanço do phe do eletrolítico.

O rim é o principal órgão do aparelho urinário.

- Os rins filtram os resíduos, fluidos e toxinas excedentes do sangue.
- ✓ No néfron, o plasma sofre modificações formando a urina.
- A urina sai dos rins através de tubos chamados ureteres e é mantida na bexiga. Logo após, deixa a bexiga através de outro tubo, nomeado de uretra.

Fonte: conhecimentocientifico.com

Fonte: br.pinterest.com

Anatomia Urinária:

- ✓ Veia cava inferior: É um vaso de grande calibre que drena o sangue proveniente dos membros inferiores.
- ✓ Supra renal: São duas glândulas, exercem importantes funções no organismo através da produção dos seus hormônios. São conhecidas como adrenais.
- ✓ Veia renal: A função da veia renal é receber o sangue após a filtração levada a cabo pelo rim e drena para o sistema da veia cava inferior.
- ✓ Artéria renal: Por onde o sangue entra nos rins. Assim, ramifica-se em pequenas arteríolas no córtex.
- ✓ Aorta: A principal função dela é garantir que o sangue oxigenado bombeado pelo coração seja levado a todas as partes do corpo.
- ✓ Ureter: Conduto que permite o escoamento da urina da pelve renal para a bexiga.
- Os rins são os órgãos localizados na porção posterior da cavidade abdominal, sendo responsáveis pela formação da urina.
- A urina é formada no interior dos rins, em uma região conhecida como néfrons.
- Os néfrons são formados basicamente pelo corpúsculo renal e um tubo longo que desemboca nos tubos coletores de urina.

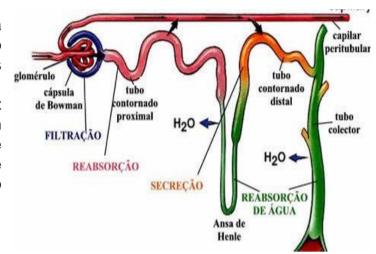
Água e solutos movem-se do plasma para dentro do lúmen dos canais tubulares (néfrons).

Esses túbulos modificam a com posição do fluido que passa através dele.

O fluido deixa os rins, vão para os ureteres e chegam à bexiga.

1.

O que faz com que a filtração ocorra através das paredes dos capilares?

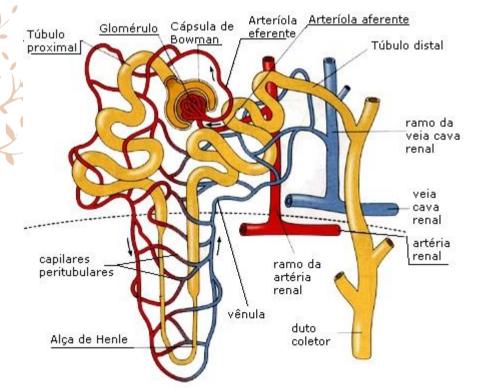

Pressão osmótica coloidal =

Pressão de líquido na cápsula

Obs: O hormônio antidiurético (ADH) regula o teor de água no corpo humano, determinando o controle da reabsorção de água nos túbulos renais.

Filtração, reabsorção e secreção dos rins.

A filtração renal é a primeira etapa, que ocorre quando o sangue passa pelo rim, mais especificamente no glomérulo. A diferença de pressão, faz com que as substâncias saiam dos vasos do glomérulo e passem para a cápsula de Bowman, formando o filtrado glomerular.


Fonte: sobiologia.com

-O papel da **reabsorção** é de recuperar as moléculas que foram filtradas, mas são essenciais ao organismo e devem retornar para a circulação.

Esse processo acontece, principalmente, no túbulo proximal do néfron.

-Na **secreção** ocorre a transferência de moléculas presentes no sangue para dentro do lúmen do néfron. Entre os principais produtos secretados, podemos citar o hidrogênio, potássio e amônia.

Corpúsculo Renal

Fonte: infoescola.com

REFERÊNCIAS

GUYTON, A.C. e Hall J.E.– **Tratado de Fisiologia Médica**. Editora Elsevier. 13^a ed., 2017.

SILVERTHORN, D. **Fisiologia Humana**: Uma Abordagem Integrada, 7ª Edição.

SANARANAYAKE, L.P.; LAKSHMAN, P. Fundamentos da microbiologia e imunologia na odontologia, 4ª edicão.

FONTES:

ANATOMIA. Disponível em: anatomia-papel-e-caneta.com Acesso em: 06 abr. 2022.

ATLAS da Saúde. Disponível em: atlasdasaude.pt Acesso em: 06 abr. 2022.

BIOLOGIANET. Disponível em: m.biologianet.com Acesso em: 06 abr. 2022.

BRASIL ESCOLA. Disponível em: www.brasilescola.uol.com.br Acesso em: 06 abr. 2022.

CONHECIMENTO. Disponível em: conhecimentocientifico.com Acesso em: 06 abr. 2022.

Dr. Drauzio Varella. Disponível em: drauziovarella.uol.com.br Acesso em: 06 abr. 2022.

EDUCA Mais Brasil. Disponível em: educamaisbrasil.com.br Acesso em: 06 abr. 2022.

EDUCAÇÃO. Disponível em: educação.uol.com.br Acesso em: 06 abr. 2022.

EDUCADOR. Disponível em: educador.brasilescola.uol.com.br Acesso em: 06 abr. 2022.

INFOESCOLA. Disponível em: infoescola.com Acesso em: 06 abr. 2022.

KHANACADEMY. Disponível em: pk.khanacademy.org Acesso em: 06 abr. 2022.

MUNDO EDUCAÇÃO. Disponível em: mundoeducacao.oul.com Acesso em: 06 abr. 2022.

NEWSCIENTIST. Disponível em: newscientist.comgov.br Acesso em: 06 abr. 2022.

PINTEREST. Disponível em: br.pinterest.com Acesso em: 06 abr. 2022.

NINJAS DA ANATOMIA: IMUNOLOGIA E FISIOLOGIA APOSTILA II – 2022.1

PLANETA BIOLOGIA. Disponível em: planetabiologia.com Acesso em: 06 abr. 2022.

PORTAL de Micologia. Disponível em: portaldemicologia.com.br Acesso em: 06 abr. 2022.

REVISTA Scielo. Disponível em: scielo.br Acesso em: 06 abr. 2022.

SANARMED. Disponível em: sanarmed.com Acesso em: 06 abr. 2022.

SAÚDE EM MOVIMENTO. Disponível em: saudeemmovimento.com.br Acesso em: 06 abr. 2022.

SLIDE PLAYER. Disponível em: https://slideplayer.com.br Acesso em: 06 abr. 2022.

SOBIOLOGIA. Disponível em: sobiologia.com.br Acesso em: 06 abr. 2022.

TIRA o Janelo. Disponível em: tiraojaleco.com.br Acesso em: 06 abr. 2022.

TODA MATÉRIA. Disponível em: <u>www.todamateria.com.br/sistema-muscular</u> Acesso em: 06 abr. 2022.

TUA saúde. Disponível em: tuasaude.com Acesso em: 06 abr. 2022.

VET PROFISSIONAL. Disponível em: Vetprofissional.com.br Acesso em: 06 abr. 2022.

